Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1019

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
classes:2009:fall:phys4101.001:lec_notes_1019 [2009/10/21 21:16] x500_spil0049classes:2009:fall:phys4101.001:lec_notes_1019 [2009/10/21 21:17] (current) x500_spil0049
Line 48: Line 48:
  <math>\delta(k-k')~\delta_{ij}</math> and normalizing in this fashion.\\Next, stationary states are Hamiltonian eigenstates and <math>e^ikx</math>⇔ momentum eigenstate. This means that if <math>\hat{p}e^ikx=khe^ikx</math>\\  <math>\delta(k-k')~\delta_{ij}</math> and normalizing in this fashion.\\Next, stationary states are Hamiltonian eigenstates and <math>e^ikx</math>⇔ momentum eigenstate. This means that if <math>\hat{p}e^ikx=khe^ikx</math>\\
 So <math>|\phi(k)|^2</math> is the probability density i.e. the likely hood of finding a momentum value.\\ So <math>|\phi(k)|^2</math> is the probability density i.e. the likely hood of finding a momentum value.\\
-therefor if you let <math> f_k(x)=1\2\pi e^ikx then <math> f_k(x)=e^ikx</math> then <math>\int f_k(x)^*f_k(x) dk</math> is now equal to+therefor if you let <math> f_k(x)=1/2\pi e^ikx</math> then <math> f_k(x)=e^ikx</math> then <math>\int f_k(x)^*f_k(x) dk</math> is now equal to
 <math>\delta(k-k')=\delta_{ij}</math> <math>\delta(k-k')=\delta_{ij}</math>
 -------------------------------------- --------------------------------------
classes/2009/fall/phys4101.001/lec_notes_1019.1256177803.txt.gz · Last modified: 2009/10/21 21:16 by x500_spil0049