Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1102

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1102 [2009/11/03 02:41] jbarthelclasses:2009:fall:phys4101.001:lec_notes_1102 [2009/11/07 21:45] (current) yk
Line 1: Line 1:
-===== Nov 02 (Mon)  =====+===== Nov 02 (Mon) Main Topics in Chap 4, Separation variables for Spherical coordinate =====
 ** Responsible party: Captain America, David Hilbert's hat   **  ** Responsible party: Captain America, David Hilbert's hat   ** 
  
Line 20: Line 20:
  
 **Class input on main points of the beginning of Chapter 4:** **Class input on main points of the beginning of Chapter 4:**
-  * <math>\nabla\^2</math> spherical coordinates+  * <math>\nabla^2</math> spherical coordinates
   * <math>L^2, L_z</math>, and why they have discrete values   * <math>L^2, L_z</math>, and why they have discrete values
   * The Hydrogen atom model   * The Hydrogen atom model
Line 30: Line 30:
  
 **Using 3-D Coordinates:** **Using 3-D Coordinates:**
 +
 From the one-dimensional Schrodinger Equation: From the one-dimensional Schrodinger Equation:
 <math> [-\frac{\hbar^2}{2m}\frac{ \partial^2}{ \partial x^2} + V(x)]\psi=E \psi</math> <math> [-\frac{\hbar^2}{2m}\frac{ \partial^2}{ \partial x^2} + V(x)]\psi=E \psi</math>
Line 35: Line 36:
 The kinetic energy term, <math>-\frac{\hbar^2}{2m}\frac{\partial^2}{ \partial x^2}</math>,  must model the 3-Dimensional kinetic energy of the system, and therefore turns into: The kinetic energy term, <math>-\frac{\hbar^2}{2m}\frac{\partial^2}{ \partial x^2}</math>,  must model the 3-Dimensional kinetic energy of the system, and therefore turns into:
  
-<math> [-\frac{\hbar^2}{2m}\nabla^2+ V(x)]\psi=E \psi</math>+<math> [-\frac{\hbar^2}{2m}\nabla^2+ V(x,y,z)]\psi=E \psi</math> 
 + 
 +Where <math>\nabla^2</math> is equal to <math> \frac{ \partial^2}{ \partial x^2} + \frac{  \partial^2}{ \partial y^2} + \frac{ \partial^2}{ \partial z^2}</math>. You can see that if you restrict this 3 dimensional case to one dimension, our original one dimensional Schrodinger equation comes out.  
 + 
 + 
 +**Separation of Variables** 
 + 
 +Using spherical coordinates will be useful for future problems that we will be solving, so it is necessary to transform the Schrodinger equation into spherical coordinates. Using the relations <math> x = r sin \theta cos \phi </math>, <math> y = r sin\theta sin\phi</math>, and <math>z = r cos\theta </math>, you can derive the Laplacian in spherical coordinates.  
 + 
 +The Laplacian will take the form of: 
 +<math>\nabla^2=\frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2}{\partial \phi^2})</math> 
 + 
 +Plugging this into the Schrodinger equation we get: 
 + 
 +<math>-\frac{\hbar^2}{2 m} [\frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2 \psi}{\partial \phi^2})] + V \psi = E \psi</math> 
 + 
 + 
 + 
 + 
 + 
 + 
 +Suppose that the wavefunction is a separable solution. It has the form:
  
-Where <math>\nabla^2</math> is equal to <math> \frac{ \partial^2}{ \partial x^2} \frac{  \partial^2}{ \partial y^2} \frac{ \partial^2}{ \partial z^2}</math>+<math>\psi(r,\theta,\phi) = R(r)Y(\theta,\phi). </math>
  
 +What we want to do is plug this form into the Schrodinger equation, and use the fact that 
  
-**To Be Finished:** +<math> \frac{\partial \psi}{\partial r} =  \frac{\partial (RY)}{\partial r} = Y \frac{\partial R}{\partial r} </math>, <math> \frac{\partial \psi}{\partial \theta} =  \frac{\partial (RY)}{\partial \theta} = R \frac{\partial Y}{\partial \theta} </math>, <math> \frac{\partial \psi}{\partial \phi} =  \frac{\partial (RY)}{\partial \phi} = R \frac{\partial Y}{\partial \phi} </math>
-  *Discussion on The Angular Equation +
-  *Legendre Polynomials+
  
 +To reduce the Schrodinger equation into one side dependent on r,<math> \frac{\partial R}{\partial r} </math> and the other side dependent on <math> \phi </math>, <math> \theta </math>, <math> \frac{\partial Y}{\partial \theta} </math>, and <math> \frac{\partial Y}{\partial \phi} </math>. Because each side of the equation is dependent on R or Y alone, you can set both sides equal to a constant and turn the Schrodinger equation into a set of solvable differential equations. 
  
 ------------------------------------------- -------------------------------------------
classes/2009/fall/phys4101.001/lec_notes_1102.1257237682.txt.gz · Last modified: 2009/11/03 02:41 by jbarthel