| Both sides previous revisionPrevious revisionNext revision | Previous revision | 
| classes:2009:fall:phys4101.001:lec_notes_1104 [2009/11/05 13:23]  –  jbarthel | classes:2009:fall:phys4101.001:lec_notes_1104 [2009/11/07 21:44] (current)  –  yk | 
|---|
| ===== Nov 04 (Wed)  ===== | ===== Nov 04 (Wed) Laplacian in Spherical Coordinate, Legendre Polynomals  ===== | 
| ** Responsible party: Captain America, Cthulhu Food **  | ** Responsible party: Captain America, Cthulhu Food **  | 
 |  | 
| \\ | \\ | 
 |  | 
| ** Mathematical method to get Laplacian**] |   | 
|   | ** Mathematical method to get Laplacian**  | 
|   |   | 
|   | The Laplacian in Cartesian coordinates is:  | 
|   |   | 
|   | <math>\bigtriangledown^2=\frac{\partial^2\Psi}{\partial x^2}+\frac{\partial^2\Psi}{\partial y^2}+\frac{\partial^2\Psi}{\partial z^2}</math>  | 
|   |   | 
|   | We start the derivation of the Laplacian in spherical coordinates with the kinetic energy operator:  | 
|   |   | 
|   | <math>\ <KE> = <\Psi|\frac{p^2}{2m}|\Psi> = \frac{1}{2m}*<\Psi|{p^2}|\Psi> </math>  | 
|   |   | 
|   | For the moment we can disregard <math>\ \frac{1}{2m} </math> because it is a multiplicative constant.  | 
|   |   | 
|   | In 1-D:  | 
|   |   | 
|   | <math>\ <\Psi|p^2|\Psi> = <p\Psi|p\Psi> = \int (\frac{\hbar}{i} \frac{\partial\Psi}{\partial\Psi})^*(\frac{\hbar}{i} \frac{\partial\Psi}{\partial\Psi})dx </math>  | 
|   |   | 
|   | In 3-D:  | 
|   |   | 
|   | <math> <KE> </math> is proportional to <math> \int (\bigtriangledown \Psi)^*(\bigtriangledown \Psi) dV </math>  | 
|   |   | 
|   | Where:  | 
|   |   | 
|   | <math> \bigtriangledown=\frac{\partial\Psi}{\partial x}+\frac{\partial\Psi}{\partial y}+\frac{\partial\Psi}{\partial z}</math> (yk says) Rather, <math> \bigtriangledown\Psi=\begin{bmatrix}  | 
|   | \frac{\partial\Psi}{\partial x}\\   | 
|   | \frac{\partial\Psi}{\partial y}\\    | 
|   | \frac{\partial\Psi}{\partial z}\end{bmatrix}</math>  | 
|   |   | 
|   | and  | 
|   |   | 
|   | <math> dV = r^2 sin\theta dr d\theta d\phi </math>  | 
|   |   | 
|   | The above integral can also be written if we introduce a few tensors:  | 
|   |   | 
|   | The first one, <math>g_{ij}=\begin{bmatrix}  | 
|   | 1 & 0 & 0\\  | 
|   | 0 & r^2 & 0\\  | 
|   | 0 & 0 & r^2\sin\theta\end{bmatrix}  </math> is a tensor, when it is bracketed by row and column vectors <math>[drdθdϕ]</math> and <math>[drdθdϕ]</math> it is form proper 3D distance, <math> ds^2 = dr^2 + r^2 d\theta^2 + (r\sin\theta)^2 d\phi^2</math>.  | 
|   |   | 
|   | The 2nd tensor is similar to the first, but it will allow <math>[ddrddθddϕ]</math> and <math>[ddrddθddϕ]</math> to form a proper 3D dot product of two //gradients//, even though some of the differentiation do not have proper units (like <math>d\theta</math>).  This 2nd tensor takes the form of <math>g^{ij}=\begin{bmatrix}  | 
|   | 1 & 0 & 0\\  | 
|   | 0 & \frac{1}{r^2} & 0\\  | 
|   | 0 & 0 & \frac{1}{r^2\sin\theta}\end{bmatrix}  </math>.  | 
|   |   | 
|   | These two tensors are both expressed with <math>g</math>, but one has indeces as subscripts, and the other, superscripts, in the convention we are using.  In fact, these two matrices are inverse of each other.  | 
|   |   | 
|   | In addition, a scaler quantity, <math>g</math> is introduced, which is the determinant of the tensor <math>g_{ij}</math>.  Using these notations, the expectation value for the kinetic energy in the spherical coordinates can be written as,   | 
|   |   | 
|   | <math> \int (\bigtriangledown_i \Psi)^* g^{ij} (\bigtriangledown_j \Psi) g^{(\frac{1}{2})} dr d\theta d\phi </math>  | 
|   |   | 
|   | where  | 
|   |   | 
|   | <math> g^{(\frac{1}{2})} = r^2 sin(\theta) </math>  | 
|   |   | 
|   | <math> i,j = r,\theta,\phi </math>.  | 
|   |   | 
|   | This expression can be equated to that for the normal Cartesian version of the same calculation, <math> \int (\bigtriangledown \Psi)^*(\bigtriangledown \Psi) dV = \int (\bigtriangledown \Psi)^*(\bigtriangledown \Psi) g^{\frac{1}{2}} dr d\theta d\phi</math>.  | 
|   |   | 
|   | //i.e.//  | 
|   | <math> \int (\bigtriangledown_i \Psi)^* g^{ij} (\bigtriangledown_j \Psi) g^{(\frac{1}{2})} dr d\theta d\phi = \int (\bigtriangledown \Psi)^*(\bigtriangledown \Psi) dV</math>.  | 
|   |   | 
|   | Both sides of this equation can be modified (using integral by parts) to move the differentiation operator on the left to be operating on the "right" function.  //i.e.//  | 
|   |   | 
|   | <math> \int (\Psi)^* \bigtriangledown_i [g^{ij} g^{(\frac{1}{2})} (\bigtriangledown_j \Psi) dr d\theta d\phi = \int (\Psi)^*\bigtriangledown(\bigtriangledown \Psi) dV = \int (\Psi)^*(\bigtriangledown^2 \Psi) dV</math>.  | 
|   |   | 
|   | At this point, if we replace <math>dV</math> with <math>g^{\frac{1}{2}} dr d\theta d\phi</math>, we get:  | 
|   |   | 
|   | <math> \int (\Psi)^* \bigtriangledown_i [g^{ij} g^{(\frac{1}{2})} (\bigtriangledown_j \Psi) dr d\theta d\phi = \int (\Psi)^*(\bigtriangledown^2 \Psi) g^{\frac{1}{2}} dr d\theta d\phi</math>.  | 
|   |   | 
|   | Since this equation between two integrals hold for any wave functions, the integrand must be equal, too.  Further, we can regard the equation for the operator in front of <math>\Psi</math>.  From this, we can claim that  | 
|   |   | 
|   | <math> \bigtriangledown_i g^{ij} g^{\frac{1}{2}} \bigtriangledown_j  = \bigtriangledown^2 g^{\frac{1}{2}} </math> or   | 
|   |   | 
|   | <math> \bigtriangledown^2 = \frac{1}{g^{\frac{1}{2}}}\bigtriangledown_i g^{ij} g^{\frac{1}{2}} \bigtriangledown_j </math> | 
 |  | 
| **Legendre Polynomials** | **Legendre Polynomials** | 
 |  | 
| where <math>\alpha</math> is separation of the r-dependent part and <math>\beta</math> is the separation of the <math>\phi</math> dependent part. | where <math>\alpha</math> is separation of the r-dependent part and <math>\beta</math> is the separation of the <math>\phi</math> dependent part. | 
|   |  | 
|   | Then the Differential equation form of <math>\Theta(\theta)= P_l^m (cos\theta)</math> replacing <math>z=cos\theta</math> | 
|   |  | 
|   | is: <math>(1-z^2)\frac{d^2U}{dz^2} - 2z \frac{dU}{dz} + \alpha U = 0</math> | 
|   |  | 
|   | Then we can take | 
|   |  | 
|   | <math>U(z)= \sum_{n=0}^\infty a_n z^n </math> | 
 |  | 
 |  | 
|   | We can then take <math>\xi=\frac{1-z}{2}</math> where <math>-1 < z < 1 </math> and therefore <math>0 < z < 1</math> | 
|   | Then <math>U(\xi)</math> is also a differential equation where | 
 |  | 
|   | <math>U(\xi)=\sum_{n=0}^\infty a_n \xi^2</math> | 
 |  | 
|   | From this we get  | 
 |  | 
|   | <math> const. U'' + const. U' + const. U= const</math> for all <math>\xi</math> | 
 |  | 
 |  |