Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1116

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1116 [2009/11/17 17:32] kuehlerclasses:2009:fall:phys4101.001:lec_notes_1116 [2009/11/19 11:59] (current) yk
Line 1: Line 1:
-===== Nov 16 (Mon)  =====+===== Nov 16 (Mon) Angular momentum with raising/lowing operators =====
 ** Responsible party: Pluto 4ever, malmx026  **  ** Responsible party: Pluto 4ever, malmx026  ** 
  
Line 20: Line 20:
  
 ====Comparison Between SHO and Angular Momentum==== ====Comparison Between SHO and Angular Momentum====
-In lecture, we just went over the basics of angular momentum and how it compared to the equations we previously learned for the simple harmonic ocsillator (SHO). 
  
-===SHO:===+In lecture, we just went over the basics of angular momentum and how it compared to the equations (concepts) we previously learned for the simple harmonic oscillator (SHO).
  
-<math>[x,p]=i{\hbar}</math>+^ ^ SHO ^ Angluar momentum ^ 
 +|The hamiltonian, H,  is proportional to | <math>x^2 + p^2</math>|<math>{L_x}^2 + {L_y}^2(+L^2_z)</math>
 +|We tried to factorize H by |<math>(x+ip)(x-ip)</math> | <math>(L_x+iL_y)(L_x-iL_y) (+L^2_z)</math> |  
 +|Call these terms| <math>a_\pm\approx \mp ip + x</math> |<math>L_\pm\approx \pm iL_y + L_x</math>
 +|factorization is not perfect so H is|<math>a_+a_-+1/2</math>|<math>L_+L_-+\hbar L_z (+L^2_z)</math>
 +|the extra factor in H is related to the commutator |<math>[a_+,a_-]=-1</math>|<math>[L_+,L_-] = 2{\hbar}{L_z}</math>
 +|while they in turn come from |<math>[x,p]=i{\hbar}</math>|<math>[L_x,L_y]=i{\hbar}{L_z}</math>
 +|meanwhile, these equation for the bottom rung state will be useful for other things |<math>{a_-}{\psi}=0</math>|<math>{L_-}{\psi}=0</math>
 +| |no top rung|<math>{L_+}{\psi}=0</math>
 +| from above, we can figure out, for example, |<math>\psi_0 = </math>, <math>E_0=\hbar\omega(n+1/2)</math> ...|<math>\lambda=m_{max}(m_{max}+1)</math> and <math>\lambda=m_{min}(m_{min}-1)</math> and more|
  
-no top rung+For the top rung, by definition, <math>{L_z}{f_t}={\hbar}{l}{f_t}</math>; <math>{L^2}{f_t}={\lambda}{f_t}</math>  
 +For the bottom rung, <math>{L_z}{f_b}=-{\hbar}{l}{f_b}</math>; <math>{L^2}{f_b}={\lambda}{f_b}</math> These are also important to draw various additional conclusions such as <math>2l</math> being an integer.
  
-<math>a_\pm = \frac{1}{sqrt{2m{\hbar}{\omega}}(\mp{ip}+m{\omega}x)<\math> 
  
  
-===Angular Momentum=== 
  
-<math>[L_x,L_y]=i{\hbar}{L_z}</math> 
  
-has a top rung, <math>{L_z}{f_t}={\hbar}{l}{f_t}</math>; <math>{L^2}{f_t}={\lambda}{f_t}</math> 
  
  
classes/2009/fall/phys4101.001/lec_notes_1116.1258500767.txt.gz · Last modified: 2009/11/17 17:32 by kuehler