Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1202

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1202 [2009/12/10 21:25] x500_vinc0053classes:2009:fall:phys4101.001:lec_notes_1202 [2009/12/10 21:45] (current) x500_vinc0053
Line 33: Line 33:
 First off, we know that <math>\vec{S}\cdot\vec{L} = {S_x}{L_x}+{S_y}{L_y}+{S_z}{L_z}</math> First off, we know that <math>\vec{S}\cdot\vec{L} = {S_x}{L_x}+{S_y}{L_y}+{S_z}{L_z}</math>
  
-<math>L^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = l(l+1)\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 2\hbar^2, s^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 3/4\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix}</math>.+<math>L^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = l(l+1)\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 2\hbar^2, s^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = \frac{3}{4}\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix}</math>.
  
 To work with this more easily, let's recall that (as on p.174), we have \\ To work with this more easily, let's recall that (as on p.174), we have \\
 <math>S_x =\frac{1}{2}(S_+ + S_-) \qquad\qquad S_y = \frac{1}{2i}(S_+ - S_-)</math> , and similarly, \\ <math>S_x =\frac{1}{2}(S_+ + S_-) \qquad\qquad S_y = \frac{1}{2i}(S_+ - S_-)</math> , and similarly, \\
 <math>L_x =\frac{1}{2}(L_+ + L_-) \qquad\qquad L_y = \frac{1}{2i}(L_+ - L_-) </math> <math>L_x =\frac{1}{2}(L_+ + L_-) \qquad\qquad L_y = \frac{1}{2i}(L_+ - L_-) </math>
 +
 +<math>S_+ \downarrow or S_- \downarrow from \sqrt{(l \mp m)(l\pm m+1)}\hbar</math> <math>l = \frac{1}{2}, m = \pm \frac{1}{2}</math>
  
 Using these expressions, we can rewrite <math>\vec{S}\cdot\vec{L}</math> in terms of just the + and - operators and the z direction operators. This is useful because we know exactly how these operators affect the vector they act on. They pull out certain constants, and the + and - operators also change the vector. (The constants for the + and - operators are given by eq 4.136 on p.172). \\ Using these expressions, we can rewrite <math>\vec{S}\cdot\vec{L}</math> in terms of just the + and - operators and the z direction operators. This is useful because we know exactly how these operators affect the vector they act on. They pull out certain constants, and the + and - operators also change the vector. (The constants for the + and - operators are given by eq 4.136 on p.172). \\
Line 58: Line 60:
  
 The rules for how this works for any values of <math>\vec{L_1}</math> and <math>\vec{L_2}</math> are that The rules for how this works for any values of <math>\vec{L_1}</math> and <math>\vec{L_2}</math> are that
-j can range from (L1+L2) to (L1-L2) in integer steps.+j can range from (L1+L2) to (L1-L2) in integer steps
 + 
 +<math>j = (l_1 + l_2), (l_1 + l_2 - 1), ... ,(l_1-l_2)</math>
  
 Here's another example. Let L1=L2=1. Then the total spin is J=2 or J=1 or J=0. For J=2, jz={2,1,0,-1,-2} (5 possibilities). Here's another example. Let L1=L2=1. Then the total spin is J=2 or J=1 or J=0. For J=2, jz={2,1,0,-1,-2} (5 possibilities).
classes/2009/fall/phys4101.001/lec_notes_1202.1260501959.txt.gz · Last modified: 2009/12/10 21:25 by x500_vinc0053