Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1202

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1202 [2009/12/10 21:36] x500_vinc0053classes:2009:fall:phys4101.001:lec_notes_1202 [2009/12/10 21:45] (current) x500_vinc0053
Line 33: Line 33:
 First off, we know that <math>\vec{S}\cdot\vec{L} = {S_x}{L_x}+{S_y}{L_y}+{S_z}{L_z}</math> First off, we know that <math>\vec{S}\cdot\vec{L} = {S_x}{L_x}+{S_y}{L_y}+{S_z}{L_z}</math>
  
-<math>L^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = l(l+1)\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 2\hbar^2, s^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 3/4\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix}</math>.+<math>L^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = l(l+1)\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = 2\hbar^2, s^2\begin{pmatrix} *\\ *\\ *\end{pmatrix} = \frac{3}{4}\hbar^2\begin{pmatrix} *\\ *\\ *\end{pmatrix}</math>.
  
 To work with this more easily, let's recall that (as on p.174), we have \\ To work with this more easily, let's recall that (as on p.174), we have \\
Line 39: Line 39:
 <math>L_x =\frac{1}{2}(L_+ + L_-) \qquad\qquad L_y = \frac{1}{2i}(L_+ - L_-) </math> <math>L_x =\frac{1}{2}(L_+ + L_-) \qquad\qquad L_y = \frac{1}{2i}(L_+ - L_-) </math>
  
-<math>S_+ \downarrow or S_- \downarrow from \sqrt{(l \mp m)(l\pm m+1)}\hbar</math> <math>l = 1/2, m = \pm 1/2</math>+<math>S_+ \downarrow or S_- \downarrow from \sqrt{(l \mp m)(l\pm m+1)}\hbar</math> <math>l = \frac{1}{2}, m = \pm \frac{1}{2}</math>
  
 Using these expressions, we can rewrite <math>\vec{S}\cdot\vec{L}</math> in terms of just the + and - operators and the z direction operators. This is useful because we know exactly how these operators affect the vector they act on. They pull out certain constants, and the + and - operators also change the vector. (The constants for the + and - operators are given by eq 4.136 on p.172). \\ Using these expressions, we can rewrite <math>\vec{S}\cdot\vec{L}</math> in terms of just the + and - operators and the z direction operators. This is useful because we know exactly how these operators affect the vector they act on. They pull out certain constants, and the + and - operators also change the vector. (The constants for the + and - operators are given by eq 4.136 on p.172). \\
Line 60: Line 60:
  
 The rules for how this works for any values of <math>\vec{L_1}</math> and <math>\vec{L_2}</math> are that The rules for how this works for any values of <math>\vec{L_1}</math> and <math>\vec{L_2}</math> are that
-j can range from (L1+L2) to (L1-L2) in integer steps.+j can range from (L1+L2) to (L1-L2) in integer steps
 + 
 +<math>j = (l_1 + l_2), (l_1 + l_2 - 1), ... ,(l_1-l_2)</math>
  
 Here's another example. Let L1=L2=1. Then the total spin is J=2 or J=1 or J=0. For J=2, jz={2,1,0,-1,-2} (5 possibilities). Here's another example. Let L1=L2=1. Then the total spin is J=2 or J=1 or J=0. For J=2, jz={2,1,0,-1,-2} (5 possibilities).
classes/2009/fall/phys4101.001/lec_notes_1202.1260502574.txt.gz · Last modified: 2009/12/10 21:36 by x500_vinc0053