Both sides previous revisionPrevious revisionNext revision | Previous revision |
classes:2009:fall:phys4101.001:lec_notes_1207 [2009/12/08 12:47] – myers | classes:2009:fall:phys4101.001:lec_notes_1207 [2009/12/15 23:58] (current) – ely |
---|
| |
====Chapter 6: Time Indepent Perturbation Theory==== | ====Chapter 6: Time Indepent Perturbation Theory==== |
| |
| We do it becuase it is a useful tool |
| |
| Shroedinger's equation is the must fundamental tool for QM. |
| We take solutions and eigenstates/eigenvectors to get energy levels |
| |
===Non-Degenerate Case=== | ===Non-Degenerate Case=== |
| This is the simplest case |
| single energy->single equation |
| |
<math> H_0|\psi_n^{(0)}>=E_n^{(0)}|\psi_n^{(0)}> </math> | <math> H_0|\psi_n^{(0)}>=E_n^{(0)}|\psi_n^{(0)}> </math> |
| |
<math> H'|\psi_n^{(0)}>+\Sigma C_{nm}H_0|\psi_m^{(0)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}|\psi_m^{(0)}> </math> | <math> H'|\psi_n^{(0)}>+\Sigma C_{nm}H_0|\psi_m^{(0)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}|\psi_m^{(0)}> </math> |
| |
| <math> H'|\psi_n^{(0)}+\Sigma C_{nm}E_m^{(0)}|\psi_m^{(0)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}|\psi_m^{(0)}> </math> |
| |
| Using this, one can find an expression for the expectation of the new Hamiltonian as follows |
| |
| <math> <\psi_n^{(0)|H'|\psi_n^{(0)}>+\Sigma C_{nm}E_m^{(0)}<\psi_n^{(0)}|\psi_m^{(0)}>=E_n^{(1)}<\psi_n^{(0)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}<\psi_n^{(0)}|\psi_m^{(0)}> </math> |
| |
| <math><\psi_n^{(0)|H'|\psi_n^{(0)}>=E_n^{(1)} </math> |
| |
| Now one can introduce a new parameter l≠n but l can equal m and show |
| |
| <math><\psi_l^{(0)|H'|\psi_n^{(0)}>+\Sigma C_{nm}E_m^{(0)}<\psi_l^{(0)}|\psi_m^{(0)}>=E_n^{(1)}<\psi_l^{(0)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}<\psi_l^{(0)}|\psi_m^{(0)}> </math> |
| |
| <math><\psi_l^{(0)|H'|\psi_n^{(0)}>+C_{nl}E_l^{(0)}=C_{nl}E_n^{(0)} </math> |
| |
| ⇒<math>C_{nl}=<\psi_l^{(0)|H'|\psi_n^{(0)}>/(E_n^{(0)}-E_l^{(0)}) </math> |
| |
| ⇒<math>E_n^{(2)}=\Sigma|<\psi_l^{(0)|H'|\psi_n^{(0)}>|^2/(E_n^{(0)}-E_l^{(0)}) </math> |
| |
| This was all i had for notes as well-Dark Helmet |
| |
------------------------------------------ | ------------------------------------------ |