Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1214

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1214 [2009/12/15 15:03] ludemanclasses:2009:fall:phys4101.001:lec_notes_1214 [2009/12/17 23:11] (current) fitch
Line 17: Line 17:
   * wonderful tricks which were used in the lecture.\\   * wonderful tricks which were used in the lecture.\\
 \\ \\
 +
 +===Perturbation Theory===
 +What do we need in perturbation theory?  We want to find the energy:
 +<math>E=E^{(0)} + E_{r} + (E_{FS}+E_Z)</math> where <math>E^{(0)} = \frac{-13.6 \mathrm{eV}}{n^2}</math>
  
 ===Fine Structure=== ===Fine Structure===
 Fine structure is due to two mechanisms: **relativistic correction** and **spin-orbit coupling**. In other words, a very small perturbation (correction) to the Bohr energies.  Fine structure is due to two mechanisms: **relativistic correction** and **spin-orbit coupling**. In other words, a very small perturbation (correction) to the Bohr energies. 
  
-The equation of which is: <math>H_{fs}=\alpha\vec{S}\vec{L}</math>+The equation of which is: <math>H_{fs}=\alpha\vec{S}\vec{L}</math>, where <math>\alpha = \frac{e^2}{4\pi \epsilon_0}\cdot\frac{1}{m^2 c^2 r^3}</math>, like a [[http://en.wikipedia.org/wiki/Magnetic_dipole–dipole_interaction|dipole-dipole interaction in E&M]].  
  
 By considering the relativistic version of momentum: <math>p=\frac{mv} {\sqrt{1-(\frac v {c})^2}}</math>. We can derive the relativistic equation for kinetic energy: <math>T=\sqrt{m^2c^4+p^2c^2}-mc^2</math>. By considering the relativistic version of momentum: <math>p=\frac{mv} {\sqrt{1-(\frac v {c})^2}}</math>. We can derive the relativistic equation for kinetic energy: <math>T=\sqrt{m^2c^4+p^2c^2}-mc^2</math>.
Line 40: Line 44:
  
 Putting it all together and we get: <math>E^1_r=-\frac{E_n^2} {2mc^2}[\frac{4n} {l+\frac{1} 2} - 3]</math>  Dividing both sides by <math>E_n</math> and we get a relativistic correction of about <math>2</math>x<math>10^{-5}</math> Putting it all together and we get: <math>E^1_r=-\frac{E_n^2} {2mc^2}[\frac{4n} {l+\frac{1} 2} - 3]</math>  Dividing both sides by <math>E_n</math> and we get a relativistic correction of about <math>2</math>x<math>10^{-5}</math>
- 
  
 ===Higher-Order Degeneracy=== ===Higher-Order Degeneracy===
classes/2009/fall/phys4101.001/lec_notes_1214.1260911002.txt.gz · Last modified: 2009/12/15 15:03 by ludeman