Gadolinium Neutron-capture Gammas in Geant4

Yu Chen
Syracuse University
AARM Workshop 2015
Motivation

• Gadolinium is used in many experiments as it has a high neutron-capture cross section

\[ ^A\text{Gd} + n \rightarrow ^{A+1}\text{Gd} + \gamma \]

• The emission of gammas following neutron-capture is not quite correctly modeled in Geant4
Status of modeling Gd neutron-capture gammas in Geant4

- G4NeutronHPCapture model chooses one from two methods to generate the capture gammas depending on whether the data of final state gammas is available:
  - If available —> Final state model based on Neutron Data Library (G4NDL):
    - Sample uncorrelated gammas from the individual gamma spectrum
    - Available for Gd since G4.9.5 with default settings
  - If not —> Photon evaporation model:
    - Generate gammas with total energy conserving Q-value properly
    - Being used for Gd thru G4.9.4 or specified by flag in later versions
- Lacking of measurements of correlation between gammas following individual neutron captures
Photon Evaporation Model

Final State Model

Conserving Q-value well

Events in the low energy tail break Q-value
(For some isotopes, e.g. Cl, the total energy can vary 0 to ~30 MeV)
The individual gamma spectra given by the two models are greatly different.
Verification with measured spectrum

Energy of Individual Gammas

Final state model agrees with measured individual gamma spectrum better


Issues in experiments

• The larger the detector, the greater the efficiency to collect gammas, then more sensitive to the total energy
  
  • Double Chooz. Have developed a modified model—Q-value conserved and high energy gammas added. The code is not compatible with recent Geant4 versions. (http://neutrino.phys.ksu.edu/~GLG4sim/Gd.html)
  
  • Daya Bay. Hope to get information from them.

• For small detectors, the individual gamma spectrum is more important
  
  • NMM, MARS, etc.

• Medium sized detectors may be sensitive to both
  
  • LZ outer detector

• Difficult to measure the correlation between gammas following individual neutron captures
More from the Neutron Multiplicity Meter

An example of small sized water Cerenkov detector
Energy deposited via e- ionization by electrons above Cerenkov threshold

Energy Deposited via elon for Particles above Cerenkov Threshold

Energy Deposited via elon for Particles above Cerenkov Threshold
Simulated detector response of the NMM