Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1014

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1014 [2009/10/14 23:21] czhangclasses:2009:fall:phys4101.001:lec_notes_1014 [2009/10/15 23:37] (current) – fixed k and kappa per Yuichi's request prestegard
Line 55: Line 55:
  
 To avoid the confusion of k and <math>\kappa</math>,  To avoid the confusion of k and <math>\kappa</math>, 
-we will introduce new different variables Z and <math>Z_0</math>+we will introduce new variables Z and <math>Z_0</math>
  
  
-Since <math>k^2=\frac{-2mE}{h^2}</math> and <math>\kappa^2=\frac{-2m(E+V_0)}{h^2}</math>, +Since <math>\kappa^2=\frac{-2mE}{\hbar^2}</math> and <math>k^2=\frac{2m(E+V_0)}{\hbar^2}</math>,  
  
  
-we define<math>Z_0^2=\frac{-2ma^2V_0}{h^2}</math> and  <math>Z^2=k^2a^2=\frac{-2ma^2(E+V_0)}{h^2}</math>+we define<math>Z_0^2=\frac{-2ma^2V_0}{\hbar^2}</math> and  <math>Z^2=k^2a^2=\frac{-2ma^2(E+V_0)}{\hbar^2}</math>
  
  
Line 67: Line 67:
  
  
-thus <math>\frac{\kappa}{k}=\sqrt{\frac{\kappa^2a^2}{k^2a^2}}\</math>+thus <math>\frac{\kappa}{k}=\sqrt{\frac{\kappa^2a^2}{k^2a^2}}=\sqrt{\frac{Z^2-Z_0^2}{Z^2}}=\sqrt{(\frac{Z_0}{Z})^2-1}\</math>  
  
  
 +<math>\Rightarrow -\cot{Z}=\frac{\kappa}{k}= \sqrt{(\frac{Z_0}{Z})^2-1}</math>
  
  
 +thus we are looking for the solution of Z for the 2 transcendental equation <math>\Rightarrow -\cot{Z}=\frac{\kappa}{k}= \sqrt{(\frac{Z_0}{Z})^2-1}</math>
  
 +Since it is really hard to solve it analytically, we can solve it graphically. 
  
 +{{:classes:2009:fall:phys4101.001:qm_lec_pic.jpg|}}\\  **the cotangent part of the graph does not look quite right! //Yuichi//**
  
 +as we can see from the graph, the periodic functions are CotZ, and the other one is <math>\sqrt{(\frac{Z_0}{Z})^2-1}</math>
  
  
 +The physical meaning of the solution, which is the intersection point, represents one bound state. In other words, the total number of intersection points tell us the number of bound state of the system.
 +Say when <math>Z_0=1</math>, it yields one intersection, which means we only have one bound state.
 +
 +The other line is when <math>Z_0=10</math>, which has more intersections denoting more bound states. 
 +
 +Remember that <math>Z_0^2=\frac{2ma^2V_0}{\hbar^2}</math>, the magnitude of Z0 is determined by the production of a^2 and V0, a is the width of potential well, and V0 is the depth of the potential well. If we keep a constant , raise the potential to infinity, Z0 goes to infinity, then we have infinite square well, which corresponds with infinite intersection on graph, and we would have infinite bound states.
 +
 +If we keep potential constant, and increase the width of the well, it would also increase the number of bound states. 
  
  
classes/2009/fall/phys4101.001/lec_notes_1014.1255580472.txt.gz · Last modified: 2009/10/14 23:21 by czhang