The general formAs an example of non-stationary state wave function, let's think about : <math>\Psi_{\strike n} (x,t) = \frac{1}{\sqrt{2}}\psi_1(x)e^{\frac{-i E_1 t}{\hbar}} + \frac{1}{\sqrt{2}}\psi_2(x)e^{\frac{-i E_2 t}{\hbar}}</math>
Then the complex conjugate: <math>\Psi^*_{\strike n} (x,t) = \frac{1}{\sqrt{2}}\psi^*_1(x)e^{\frac{+i E_1 t}{\hbar}} + \frac{1}{\sqrt{2}}\psi^*_2(x)e^{\frac{+i E_2 t}{\hbar}}</math>
The cross terms of <math>\Psi^*(x,t)\Psi(x,t)</math> become <math>e^{i(\frac{E_1-E_2}{\hbar})t}</math> or <math>e^{-i(\frac{E_1-E_2}{\hbar})t}</math>
If you add these two, the time dependence still doesn't necessarily disappear. However, in the case of <math><\hat{H}></math>, these cross terms will go away if you do more calculations, which happens because<math>\psi_1(x)</math> and <math>\psi_2(x)</math> areorthogonal! .
For example: letNote that if we define <math>\xi \equiv \frac{E_1 - E_2}{\hbar}t</math>, we might get <math>e^{i\xi} + e^{-i\xi}</math> in the above calculations of the energy expectation value .
Real part:Knowing that <math>{\rm e}^{\pm\xi}=\cos{\xi} \pm i\sin{\xi}</math>, the imaginary part of the above expression may cancel, but the real part will remain.
Imaginary part cancels, This will still leave us with a time dependent portion