Responsible party: Captain America, David Hilbert's hat
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104
Main class wiki page: home
Please try to include the following
Class input on main points of the beginning of Chapter 4:
Using 3-D Coordinates:
From the one-dimensional Schrodinger Equation: <math> [-\frac{\hbar^2}{2m}\frac{ \partial^2}{ \partial x^2} + V(x)]\psi=E \psi</math>
The kinetic energy term, <math>-\frac{\hbar^2}{2m}\frac{\partial^2}{ \partial x^2}</math>, must model the 3-Dimensional kinetic energy of the system, and therefore turns into:
<math> [-\frac{\hbar^2}{2m}\nabla^2+ V(x,y,z)]\psi=E \psi</math>
Where <math>\nabla^2</math> is equal to <math> \frac{ \partial^2}{ \partial x^2} + \frac{ \partial^2}{ \partial y^2} + \frac{ \partial^2}{ \partial z^2}</math>. You can see that if you restrict this 3 dimensional case to one dimension, our original one dimensional Schrodinger equation comes out.
Separation of Variables
Using spherical coordinates will be useful for future problems that we will be solving, so it is necessary to transform the Schrodinger equation into spherical coordinates. Using the relations <math> x = r sin \theta cos \phi </math>, <math> y = r sin\theta sin\phi</math>, and <math>z = r cos\theta </math>, you can derive the Laplacian in spherical coordinates.
The Laplacian will take the form of: <math>\nabla^2=\frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2}{\partial \phi^2})</math>
Plugging this into the Schrodinger equation we get:
<math>-\frac{\hbar^2}{2 m} [\frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2 \psi}{\partial \phi^2})] + V \psi = E \psi</math>
Suppose that the wavefunction is a separable solution. It has the form:
<math>\psi(r,\theta,\phi) = R®Y(\theta,\phi). </math>
What we want to do is plug this form into the Schrodinger equation, and use the fact that
<math> \frac{\partial \psi}{\partial r} = \frac{\partial (RY)}{\partial r} = Y \frac{\partial R}{\partial r} </math>, <math> \frac{\partial \psi}{\partial \theta} = \frac{\partial (RY)}{\partial \theta} = R \frac{\partial Y}{\partial \theta} </math>, <math> \frac{\partial \psi}{\partial \phi} = \frac{\partial (RY)}{\partial \phi} = R \frac{\partial Y}{\partial \phi} </math>
To reduce the Schrodinger equation into one side dependent on r,<math> \frac{\partial R}{\partial r} </math> and the other side dependent on <math> \phi </math>, <math> \theta </math>, <math> \frac{\partial Y}{\partial \theta} </math>, and <math> \frac{\partial Y}{\partial \phi} </math>. Because each side of the equation is dependent on R or Y alone, you can set both sides equal to a constant and turn the Schrodinger equation into a set of solvable differential equations.
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104