Campuses:
This is an old revision of the document!
Responsible party: East End, Devlin
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_0923
next lecture note: lec_notes_0928
Main class wiki page: home
Please try to include the following
Steps to the Analytic Method:
1) Use dimensionless form of DE
<math>let \xi = \sqr [(m\omegax}/\hbar)] </math> and <math> K=(2E)/(\hbar\omega). </math>
Then we can use the dimensionless form of the Schrodinger <math> \frac{\partial^2}{\partial x^2}=(\xi^2-K)\psi(x) </math>
We can think of <math> \xi </math> as approximately <math> x </math> and also <math> \psi </math> as approximately <math> e^(-(\xi)^2/2)</math>.
2.) <math> \psi~h(\xi)e^(-\xi/2) </math> <math> \frac{\partial^2}{\partial x^2}=(\xi^2-K)\psi(x) </math>
3.) Substitute <math> \psi </math> into <math> \frac{\partial^2}{\partial x^2}=(\xi^2-K)\psi(x). </math>
Then, <math> \frac{\partial^2h(\xi)}{\partial \xi^2}=-2\xih(\xi)+(K-1)(h(\xi)=0 </math>
4>) Use power series to come up with an expression
{2m}\frac{\partial^2}{\partial x^2}+\frac{1}{2} k \strike{\omega} x^2. </math>
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_0923
next lecture note: lec_notes_0928