Campuses:
This is an old revision of the document!
Responsible party: spillane, physics4dummies
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1016
next lecture note: lec_notes_1021
Main class wiki page: home
Please try to include the following
Define Hilbert space- Hilbert space contains the set of all square-integrable functions, on a specified interval (usually ±∞, but more generally (a and b)
<math>f(x)=\int_{-\infty}^{\infty}|f(x)|^2dx < \infty</math>
where all functions that have this property make up a vector space we call Hilbert space. Hilbert space is real space that contains the inner product of two functions defined as follows:
<math> <f|g>=\int_{-\infty}^{\infty}f(x)^*g(x) dx </math>if f and g are both square-integrable the inner product is guaranteed to exist, if the inner product does not exist the then <math> <f|g>=\int_{-\infty}^{\infty}f(x)^*g(x) dx </math> diverges
*Notation relationships
We claim that the operator <math>\hat{Q}\</math>⇔<math>Q_{mn}=\int\psi_m^*\hat{Q}\psi_n dx</math>. Here we introduce new short hand notation <math><e_m|\hat{Q}e_n></math>, where <math> |e_n{>} </math>is a unit vector.
For example<math> |e_n></math> could represent the ground state wave function. That is<math>|\psi>=\psi=\sum c_n\psi_n and <\psi|=\psi^*=\sum c_n^*\psi_n </math>
Back to the claim made. Is this a sensible claim?
So, we speculate that <f|g> =<math>\sum_n F_{i}^*g_{i}</math> that is to say for example if A and B are vectors then A⋅B=<math>A_{1}B_{1}……A_{n}B_{n}</math>
We begin by inspecting that if <math>|f>=\sum_i f_{i}|e_{i}>,|g> = \sum_i g_{i}|e_{i}></math>
so <math><f|g>=\sum_i F_{i}^*|e_{i}>\sum_j g_{j}|e_{i}></math> (where i and j are independent)
Then we can say this equals <math>\sum_{ij}f_i^*g_i<e_i|e_j> </math>where<math> <e_i|e_j> =\int\psi_i^*\psi_j dx=\delta_{ij}</math> Which we know equals one if i=j and eauals zero if i≠j
∴<math>\sum f_i^*g_i\delta_{ij}= \sum f_i^*g_i</math> whooooo!
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1016
next lecture note: lec_notes_1021