Campuses:
This is an old revision of the document!
Responsible party: liux0756, Dagny
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1019
next lecture note: lec_notes_1026
Quiz 2 main concepts: quiz_2_1023
Main class wiki page: home
Please try to include the following
Important Info regarding the quiz:
Major topics:
We reviewed a little from the chapter 3 material. We had several questions and spent some time on them.
Highlights from Chapter 3:
Part 1. Inner Product
“<math>\int_a^b f(x)*g(x)\,\mathrm dx = <f|g></math>”
1 & 0 & 0 & …
0 & 1 & 0 & …
0 & 0 & 1 & …
. & . & .
. & . & .
. & . & . \end{bmatrix}=I</math>, unit matrix.
<math><f|g>=\sum_{i} <f|e_i><e_i|g></math>, as <math><f|e_i>=f_i^*</math>, <math><e_i|g>=g_i</math>, so <math><f|g>=\sum_{i} f_i^*g_i</math>
Q_1_1 & Q_1_2 & Q_1_3 & …
Q_2_1 & Q_2_2 & Q_2_3 & …
Q_3_1 & Q_3_2 & Q_3_3 & …
. & . & .
. & . & .
. & . & . \end{bmatrix}</math>
<math><e_i|\hat{Q}|e_j>=Q_i_j</math>
<math><f|\hat{Q}|g>=\sum_{i,j} <f|e_i><e_i|\hat{Q}|e_j><e_j|g> = \sum_{i,j} f_i^* Q_i_j g_j </math>
Part 2. Hermitian Operator
<f|Âg> = <Âf|g> for all f(x) and all g(x)
where  is a hermitian operator and f and g are functions of x.
Hermitian Operators represent observables.
Âf = af
Eigenvalues are numbers only. (i.e., they are NOT operators or functions)
proof: A, B are two Hermitian operators, so <math>A^+=A</math>, <math>B^+=B</math> (see Problem 3.5)
then <math>(AB)^+=B^+A^+=BA</math> (see Problem 3.5)
Only if BA=AB can we get that <math>(AB)^+=BA=AB</math>. AB is Hermitian. QED
Part 3. Orthonormality for eigenstates
This can be generalized to all Hermitian operators. (Theorem 2 in textbook) Eigenfunctions belonging to distinct eigenvalues are orthogonal.
<math><\psi_n|\psi_m>=<n|m>=\int \psi_n^* \psi_m\, dx =\delta_n_m</math>
<math>|\psi>=\sum C_n |\psi_n> </math>
<math>|C_n|^2</math> is the probability that the particle is found to have energy <math>E=E_n</math>
proof: because of orthonormality, <math><\psi|\psi>=1</math>, <math><\psi_n|\psi_m>=\delta_n_m</math>
so <math>1=<\psi|\psi>=\sum_{n} \sum_{m} C_n^* C_m <\psi_n|\psi_m>=\sum_{n} \sum_{m} C_n^* C_m \delta_n_m=\sum_{n} |C_n|^2 </math>. QED
proof: in eigenstates, the expectation values are eigenvalues, which means <math><\hat{H}|\psi_n>=E_n|\psi_n></math>
so <math><\psi_n|\hat{H}|\psi_m>=<\psi_n|E_m|\psi_m>=E_m<\psi_n|\psi_m>=E_m \delta_n_m </math>
The expectation value of H in state <math>\psi</math> is: <math><\hat{H}>=<\psi|\hat{H}|\psi>=\sum_{n} \sum_{m} C_n^* C_m <\psi_n|\hat{H}|\psi_m> = \sum_{n} \sum_{m} C_n^* C_m E_m \delta_n_m = \sum_{n} |C_n|^2 E_n </math> QED.
Proof of orthonormality of infinite square well and simple harmonic oscillator(this part is not mentioned in class)
The wave function is <math>\psi_n(x)=\sqrt{\frac{2}{L}} \sin\frac{n \pi x}{L} </math>
So <math> <\psi_n|\psi_m>=\frac{2}{L}\int_0^L \sin\frac{n \pi x}{L} \sin\frac{m \pi x}{L} dx
=\frac{1}{L}\int_0^L [\cos\frac{(n-m) \pi x}{L} - \cos\frac{(n+m) \pi x}{L}] dx </math>
If n=m, then <math> <\psi_n|\psi_m>=<\psi_n|\psi_n>=\frac{1}{L}\int_0^L [1 - \cos\frac{2n \pi x}{L}] dx
=\frac{1}{L}(L - \frac{L}{2n \pi} \sin\frac{2n \pi x}{L} |_0^L ) = \frac{1}{L} (L-0)=1</math>
If <math>n \neq m </math>, then <math> <\psi_n|\psi_m>=\frac{1}{L}[\frac{L}{(n-m) \pi} \sin\frac{(n-m) \pi x}{L} |_0^L - \frac{L}{(n+m) \pi} \sin\frac{(n+m) \pi x}{L} |_0^L ]=\frac{1}{L}(0-0)=0 </math>
So <math> <\psi_n|\psi_m>=\delta_n_m</math> QED.
The wave function is <math>\psi_n(x)=(\frac{mw}{\pi \hbar})^{1/4} \frac{1}{sqrt{2^n n!}} H_n(\xi)e^{-\xi^2 /2} </math> (Equation [2.85] in textbook)
So <math> <\psi_m|\psi_n>=sqrt(\frac{mw}{\pi \hbar}) \frac{1}{sqrt{2^m m!}} \frac{1}{sqrt{2^n n!}} \int_{-\infty}^{+\infty} H_m(\xi)H_n(\xi)e^{-\xi^2} dx </math>
note that <math>\xi=sqrt(\frac{mw}{\hbar})x</math> (equation [2.71] in textbook), we have <math>d\xi=sqrt(\frac{mw}{\hbar})dx</math>, then <math> <\psi_m|\psi_n>=\frac{1}{sqrt{\pi}} \frac{1}{sqrt{2^m m!}} \frac{1}{sqrt{2^n n!}} \int_{-\infty}^{+\infty} H_m(\xi)H_n(\xi)e^{-\xi^2} d\xi </math>
According to equation [2.89] in textbook, we have
<math>e^{-t^2+2t \xi}=\sum_{m=0}^{\infty} \frac{t^m}{m!} H_m(\xi)</math>
<math>e^{-s^2+2s \xi}=\sum_{n=0}^{\infty} \frac{s^n}{n!} H_n(\xi)</math>
multiply the two equations above we get
<math>e^{-(t^2+s^2)+2(s+t) \xi}=e^{2ts+\xi^2}e^{-(t+s-\xi)^2}=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty} \frac{t^m s^n}{m!n!} H_m(\xi) H_n(\xi)</math>
To be continued :)
Good luck on the quiz!
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1019
next lecture note: lec_notes_1026
Quiz 2 main concepts: quiz_2_1023