Campuses:
This is an old revision of the document!
Responsible party: Captain America, David Hilbert's hat
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104
Main class wiki page: home
Please try to include the following
Class input on main points of the beginning of Chapter 4:
Using 3-D Coordinates: From the one-dimensional Schrodinger Equation: <math> [-\frac{\hbar^2}{2m}\frac{ \partial^2}{ \partial x^2} + V(x)]\psi=E \psi</math>
The kinetic energy term, <math>-\frac{\hbar^2}{2m}\frac{\partial^2}{ \partial x^2}</math>, must model the 3-Dimensional kinetic energy of the system, and therefore turns into:
<math> [-\frac{\hbar^2}{2m}\nabla^2+ V(x)]\psi=E \psi</math>
Where <math>\nabla^2</math> is equal to <math> \frac{ \partial^2}{ \partial x^2} \frac{ \partial^2}{ \partial y^2} \frac{ \partial^2}{ \partial z^2}</math>
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104