Campuses:
This is an old revision of the document!
Responsible party: Captain America, David Hilbert's hat
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104
Main class wiki page: home
Please try to include the following
Class input on main points of the beginning of Chapter 4:
Using 3-D Coordinates:
From the one-dimensional Schrodinger Equation: <math> [-\frac{\hbar^2}{2m}\frac{ \partial^2}{ \partial x^2} + V(x)]\psi=E \psi</math>
The kinetic energy term, <math>-\frac{\hbar^2}{2m}\frac{\partial^2}{ \partial x^2}</math>, must model the 3-Dimensional kinetic energy of the system, and therefore turns into:
<math> [-\frac{\hbar^2}{2m}\nabla^2+ V(x)]\psi=E \psi</math>
Where <math>\nabla^2</math> is equal to <math> \frac{ \partial^2}{ \partial x^2} + \frac{ \partial^2}{ \partial y^2} + \frac{ \partial^2}{ \partial z^2}</math>
Separation of Variables
Using spherical coordinates will be useful for future problems that we will be solving, so it is necessary to transform the Schrodinger equation into spherical coordinates. The Laplacian will take the form of: <math>\nabla^2=\frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2}{\partial \phi^2})</math>
Plugging this into the Schrodinger equation we get:
<math>-\frac{\hbar^2}{2 m} [\frac{1}{r^2} \frac{\partial \psi}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} (sin(\theta) \frac{\partial \spi}{\partial \theta}) + \frac{1}{r^2 sin^2(\theta)} (\frac{\partial^2 \psi}{\partial \phi^2})] + V \psi = E \psi</math>
To Be Finished:
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1030
next lecture note: lec_notes_1104