Campuses:
This is an old revision of the document!
Responsible party: Pluto 4ever, malmx026
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1111
Main quiz 3 concepts: Quiz_3_1113
next lecture note: lec_notes_1118
Main class wiki page: home
Please try to include the following
In lecture, we just went over the basics of angular momentum and how it compared to the equations (concepts) we previously learned for the simple harmonic oscillator (SHO).
SHO | Angluar momentum | |||||
---|---|---|---|---|---|---|
The hamiltonian, H, is proportional to | <math>x | 2 + p | 2</math> | <math>{L_x} | 2 + {L_y} | 2</math> |
We tried to factorize H by | <math>(x+ip)(x-ip)</math> | <math>(L_x+iL_y)(L_x-iL_y)</math> | ||||
Call these terms | <math>a_\pm\approx \mp ip + x</math> | <math>L_\pm\approx \pm iL_y + L_x</math> | ||||
<math>[x,p]=i{\hbar}</math> | <math>[L_x,L_y]=i{\hbar}{L_z}</math> |
no top rung
<math>a_\pm ={ \frac{1}{sqrt{2m{\hbar}{\omega}}}(\mp{ip}+m{\omega}x)</math>
bottom rung, <math>{a_-}{\psi}=0</math>
<math>[a_+,a_-]=-1</math>
<math>H = {\hbar}{\omega}({a_+}{a_-}-1)</math>
has a top rung, <math>{L_z}{f_t}={\hbar}{l}{f_t}</math>; <math>{L^2}{f_t}={\lambda}{f_t}</math>
<math>L_\pm =\pm{i}{\hbar}L_y + L_x</math>
bottom rung, <math>{L_z}{f_b}=-{\hbar}{l}{f_b}</math>; <math>{L^2}{f_b}={\lambda}{f_b}</math>
The hamiltonian, H, is proportional to
<math>[L_+,L_-] = 2{\hbar}{L_z}</math>
<math>L^2 = {L_\pm}{L_\mp}+{L_z}^2\mp{\hbar}{L_z}</math>
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1111
Main quiz 3 concepts: Quiz_3_1113
next lecture note: lec_notes_1118