Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1118

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1118 [2009/11/18 18:40] x500_chap0326classes:2009:fall:phys4101.001:lec_notes_1118 [2009/11/19 11:57] (current) yk
Line 1: Line 1:
-===== Nov 18 (Wed)  =====+===== Nov 18 (Wed) closure for L, Starting Spins =====
 ** Responsible party: Ekrpat, chap0326 **  ** Responsible party: Ekrpat, chap0326 ** 
  
Line 45: Line 45:
  
  
 +===Starting Spin===
  
 +We first made the note that we started with a quantum state represented by <math>\psi_n</math> which implies that it is a function of x, <math>\psi_n(x)</math>. Now we use a more abstract representation |<math>\psi_n</math>>, which doesn't necessarily imply that <math>\psi_n</math> is a function of x.
 +
 +
 +Then from this notation, |<math>\psi_n</math>>, we can go to a matrix vector notation:
 +
 +
 +<math>\psi_n</math> ~ |<math>\psi_n</math>> ~ <math>\Sigma c_n \psi_n</math> ~ <math>$\begin{pmatrix} c_1\\ c_2\\ c_3\\ etc. \end{pmatrix}$</math>
 +
 +
 + In spin we have something analogous:
 +
 +~|<math>\chi</math>> ~ <math>c_+\chi_+ + c_-\chi_-</math> which goes to <math>$\begin{pmatrix} c_+\\ c_-\end{pmatrix}$</math>
 +
 +We paused here to understand what characterizes <math>\chi_+</math>.
 +
 +When you operate with the z-component of the angular momontum, <math>L_z</math>, you get:
 +
 +<math>L_z \chi_+ = \frac{\hbar}{2} \chi_+ </math>
 +
 +This says to us that <math>\chi_+</math> is an eigenvector of  the <math>L_z</math> operator with an eigenvalue of <math>\frac{\hbar}{2}</math>
 +
 +Then we said that
 +
 +<math>\chi_+</math> ~ <math>|s, s_z></math> = <math>| \frac{1}{2}, \frac{1}{2}></math>
 +
 +We also made note that the book also calls |<math>s, s_z</math>>:
 +
 +<math>|s, s_z></math> = <math>|s, m></math> = <math>|s, m_s></math>
 +
 +and wondered why we use all these different notations. To explain we recalled from angular momentum that
 +
 +<math>{Y_l}^m </math> ~ <math>{F_l}^m</math> ~<math> |l, m></math>
 +
 +If you apply <math>L^2</math> on it
 +
 +<math>L^2 |l, m> = l(l+1){\hbar}^2 |l,m></math>
 +
 +<math>L_z |l, m> = m{\hbar} |l,m></math>
 +
 +<math>L^2 \chi_+ = s(s+1){\hbar}^2 \chi_+</math>
 +
 +we can begin to see how it makes sense. The 'm' is related to the magnetic quantum number, <math>m_s</math> is to help distinguish between the spin part of the magnetic. <math>s_z</math> indicates we are talking about the z-component.
 +
 +
 +
 +Yuichi says to take a good look at section 4.4 to find what does not make sense to us, so that we know what questions to ask next lecture.
  
  
classes/2009/fall/phys4101.001/lec_notes_1118.1258591209.txt.gz · Last modified: 2009/11/18 18:40 by x500_chap0326