Responsible party: Anaximenes, Dark Helmet
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1125
next lecture note: lec_notes_1202
Main class wiki page: home
This lecture turned into mostly review. I could use some help remembering specifically what we talked about. I've put in the major topics below, and I'm working on adding the details. If anyone can add something I've forgotten in the mean-time, that'd be great.
Major topics:
Brief discussion of Stern-Gerlach device
vector representation
First steps in adding angular momentum
including matrix representation
The last quiz will be on 12/11 instead of 12/04
continued the addition of angular momentum
As incorrectly stated in previous lecture:
<math>J^2 = \frac{1}{2}\hbar^2 \begin{pmatrix} 1 & 0 & 0 & 0
0 & -1 & 2 & 0
0 & 2 & -1 & 0
0 & 0 & 0 & 1 \end{pmatrix} </math>
What this should have said was
<math>2(S_1)(S_2)= \frac{1}{2}\hbar^2 \begin{pmatrix} 1 & 0 & 0 & 0
0 & -1 & 2 & 0
0 & 2 & -1 & 0
0 & 0 & 0 & 1 \end{pmatrix} </math>
<math>J^2=(S_1+S_2)^2=(S_1)^2+(S_2)^2+2(S_1)(S_2)</math>
So we missed the <math>(S_1)^2</math> and <math>(S_2)^2</math> terms which bring:
<math>\frac{1}{2}\hbar^2 \begin{pmatrix} 1 & 0 & 0 & 0
0 & 1 & 0 & 0
0 & 0 & 1 & 0
0 & 0 & 0 & 1 \end{pmatrix} </math>
which gives us the <math>J^2</math> matrix:
<math>J^2 = \frac{1}{2}\hbar^2 \begin{pmatrix} 4 & 0 & 0 & 0
0 & 2 & 3 & 0
0 & 3 & 2 & 0
0 & 0 & 0 & 4 \end{pmatrix} </math>
We then found some of the Eigenvalues and Eigenstates of <math>2(S_1)(S_2)</math>
<math> \begin{pmatrix} 1-{\lambda} & 0 & 0 & 0
0 & -1-{\lambda} & 2 & 0
0 & 2 & -1-{\lambda} & 0
0 & 0 & 0 & 1-{\lambda} \end{pmatrix} </math>
more will be coming when i figure out how to make arrows
1)