Campuses:
This is an old revision of the document!
Responsible party: John Galt, Dark Helmet, Esquire
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1204
next lecture note: lec_notes_1209
Main class wiki page: home
<math> H_0|\psi_n^{(0)}>=E_n^{(0)}|\psi_n^{(0)}> </math>
<math> <\psi_m^{(0)}|\psi_n^{(0)}>=\delta_{mn} </math>
<math> H=H_0 +\lambda H' </math> ⇒ <math> H|\psi_n>=E_n|\psi_n> </math>
The goal is to seek an approximation of this new Hamiltonian expression. Specifically we want…
<math> E_n=E_n^{(0)}+\lambda E_n^{(1)}+\lambda^{2} E_n^{(2)} </math>
We define <math> <\psi_n^{(0)}|\psi_n^{(1)}>=<\psi_n^{(0)}|\psi_n^{(2)}>=0 </math>
A Fourier expansion can be used to express <math> |\psi_n^{(1)}>=\Sigma C_{mn}|\psi_n^{(0)}> </math> where m≠n
Plugging this into the new Hamiltion yields
<math> (H_0+\lambda H')(|\psi_n^{(0)}>+\lambda|\psi_n^{(1)}>)=(E_n^{(0)}+\lambda E_n^{(1)})(|\psi_n^{(0)}>+\lambda|\psi_n^(1)>) </math>
<math> H_0|\psi_n^{(0)}>+\lambda(H'|\p </math>
To go back to the lecture note list, click lec_notes
previous lecture note: lec_notes_1204
next lecture note: lec_notes_1209